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The effects of capillarity on free-streamline separation 

By R. C. ACKERBERG 
Department of Chemical Engineering, Polytechnic Institute of New York, Brooklyn 

(Received 9 October 1974) 

The effect of a small surface-tension coefficient on the classical theory of free- 
streamline separation from a sharp trailing edge is studied. The classical solution 
fails in a small region surrounding the edge, where it predicts singular behaviour, 
and an inner solution, satisfying linear boundary conditions, is required to obtain 
a uniformly valid first approximation. The solution valid near the edge removes 
the curvature and pressure-gradient singularities of the classical solution and 
predicts a standing capillary wave along the free streamline. 

1. Introduction 
The mathematical theory of free-streamline flows which was developed in the 

second half of the nineteenth century by Helmholtz and Kirchhoff failed to take 
into account any effects which capillarity might have on the motion or shape of 
the free streamline. I n  1891 Zhukovskii (see Gurevich 1965, p. 549) included 
surface-tension effects by deriving a nonlinear boundary condition along the free 
streamline, which he used in solving for the flow past a bubble; this example was 
also considered by McLeod (1955). More recently Gurevich (1961) studied the 
effect that small capillary forces would have on the coefficient of contraction of 
a jet using a regular perturbation technique, with the Helmholtz potential flow 
as the first-order approximation. 

I n  this paper we consider how a small surface-tension coefficient modifies the 
flow in a neighbourhood of a sharp trailing edge to which a free streamline is 
attached. This is an interesting and important problem because the classical 
solutions have the following deficiencies. 

(i) The curvature of the free streamline a t  the separation point is infinite and, 
according to Laplace's capillarity equation (2.7) below, this requires an infinitely 
negative pressure just inside the fluid along the free streamline. 

(ii) If the fluid speed a t  the separation point is non-zero, the intrinsic equations 
of motion (see Milne-Thomson 1957, p. 105) predict that the component of the 
pressure gradient normal to the free streamline is infinite. 

(iii) The favourable pressure gradient along the wall upstream of the separa- 
tion point tends to infinity a t  the separation point, and the resulting boundary- 
layer motion, studied by Ackerberg (1970, 1973u), implies an infinite skin 
friction a t  the edge. 

Since there are no reports of bent or broken edges when these flows occur, these 
predictions must be questioned and interpreted properly. 
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I n  many cases of practical interest t,he fluids under consideration are charac- 
terized by small surface-tension coefficients, which, in non-dimensional form, 
correspond to large Weber numbers. We should anticipate that the difficulties 
mentioned above are indicative of a local failure of the classical theory (for the 
limiting case of zero surface tension) in a small neighbourhood of the edge where 
the curvature is large. Thus, a non-uniform limit is expected near the edge and 
the inclusion of a small non-zero surface tension as a singular perturbation might 
remove the singular behaviour. Away from this (inner) region, the classical results 
should apply to first order. This paper will be concerned with finding first-order 
solutions using the method of matched asymptotic expansions; there should be 
no difficulty in principle in extending this analysis to higher orders. 

I n  $ 2 the problem is forniulated mathematically in the plane of the complex 
velocity potential using the logarithm of the speed and the deflexion angle as 
dependent variables. A nonlinear boundary condition is derived along the free 
streamline which relates the logarithm of the speed to its normal derivative. 
Denoting the reciprocal of the Weber number by B, it is shown that the limit 
6+0 is non-uniform near the edge owing to the curvature singularity, and an 
inner region, centred on the edge and of physical dimensions x = O ( s L )  by 
y = O(e%L), where L is a length characterizing the potential flow, is required to  
obtain a uniformly valid solution. The flow in the inner region satisfies Laplace’s 
equation with linear boundary conditions. 

The non-uniqueness of the solution is discussed in $ 3 ,  and a fundamental 
solution is found using the Wiener-Hopf technique. Since we did not know what 
type of singularity to expect a t  the separation point we sought the smoothest 
possible solution. It is remztrkable that only one solution exists for which the 
speed and its normal derivat<ive are continuous a t  the separation point, and in $ 4 
this solution is determined in terms of the fundamental solution. Our results 
indicate a standing capillary wave along the free streamline, and the singularities 
predicted at the edge by the classical solution are removed. In  $ 5  numerical 
solutions for the free-streamline shapes in the inner region are found, and the 
results are summarized and discussed. 

2. Mathematical formulation 
Introduce a co-ordinate system X = X + iB with origin a t  the separation point S 

(seefigure 1). Wehavechosenthe tangent to thewall atXtobeparalle1 to theX axis 
without loss of generality. The velocity components in the directions of x and ?j 
increasing are denoted by U and V, respectively, and a constant gravitational 
force g (per unit mass) acts in the direction of J decreasing. The free streamline SB 
is bounded on one side by a region of constant pressure p = p, in which the fluid 
is assumed to be at  rest, and only motions which are steady and irrotational are 
considered. Denoting dimensional variables by bars, we introduce the following 
non-dimensional variables : 
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Free streamline / 
P'PO 

FIGURE 1. Flow geometry. 

Here L is a length scale characteristic of the potential flow (e.g. a slot width or 
plate breadth), U, is the fluid speed which would exist at  the separation point S 
with zero surface-tension coeflicient, p is the constant fluid density, ij = (u2 + V2)8 is 
the fluid speed and q5 and $ are the velocity potential and stream function, which 
are related to the velocity components by the equations 

ZG = q5z = $u, v = q5u = -$ X, (2.2) 

with subscripts denoting partial differentiation. 
Free-streamline problems are characterized by a free boundary whose position 

in the physical plane is not known in advance. To deal with this problem it is 
convenient to introduce q5 and $ as independent variables and to define the 
complex velocity potential w = q5 + i$ and the complex velocity 

dwldz = u - iv = q e@, 

where 8 is the fluid deflexion angle shown in figure 1. Each of these functions will 
be analytic in z and the logarithm of the complex velocity, defined by 

rw = a#, $1 - iw, li/) = in (dtuiw, (2.31 

with Q = lnq, will be an analytic function of w with Q and 8 related by the 
Gauchy-Riernan equations 

Thus each function is harmonic in the #, $ plane and satisfies 

Q+ = 0#> Q$ = - 6,. (2.4) 

V2Q = V20 = 0, where V2 = a2/a#2 + a2/@P. (2.5) 

The flow region in the z plane will be mapped into the upper half of the w plane 
(-co < q5 < co, $ > 0); the correspondence is shown in figure 2. 
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FICKJRE 2. The w = 9 + i$ plane. 

Boundary condition along the free streamline 

We apply Bernoulli’s equation along the free streamline SB in the form 

(2.6) p+hpij2+pgg =po++pU: on ?I. = 0, 4 > 0. 

We are free to specify the total head in the plane jj = 0 and have chosen it equal 
to that which would exist without surface-tension effects. The definitions of 
p ,  and U, given previously are consistent with this choice. It is important to 
realize that this specification does not require the speed a t  the separation point 
to be Uo. The separation speed will depend on the free-streamline curvature a t  
the separation point, as we shall see. 

- 

A relationship between ji and p ,  is given by Laplace’s formula 

F - Po = YI& (2.7) 

where the surface-tension coefficient y is expressed in dyneslcm or equivalent 
units and Rf = Rf/L is the non-dimensional radius of curvature of the free streani- 
line. Noting that (u, v) = Vq5 and q = a$/&, we have R,-l = aO/as = q de/aq5, where 
s is the non-dimensional arc length measured from the separation point down- 
stream along the free streamline; from these definitions, the curvature of the 
streamline shown in figure 1 is negative. 

Combining (2.6) and (2.7), and introducing the non-dimensionalization (2.1), 
we obtain 

a@$ = &a(q-l-p) -,8y/q on 9 = 0, 4 > 0, (2.8) 

where a = p U t L / y  is the Weber number and ,8 = pgL2 /y  is the Bond number. 
Putting q = eQ and using (2.4), we may write (2.8) in the form 

aQ/a$ = -asinhQ-pe-Qy on @ = 0, $ > 0. (2.9) 
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At the separation point, where y = 0, (2.8) defines the separation speed qs in 
terms of the radius of curvature R,,, i.e. 

qs = (1 - 2/aRfS)k. (2.10) 

The boundary condition (2.8) was derived by Zhukovskii (see Gurevich 1965, 
p. 550), and the form (2.9), which relates Q and its normal derivative along 
the boundary, was obtained by Crapper (1957). It is remarkable that, when 
p = 0 (zero gravity), the condition (2.9) is the same as that obtained by Ackerberg 
& Pal (1968) and Ackerberg (1968a,b) for the motion along a vortex sheet 
separating an injected jet from a uniform stream.? Thus a similarity exists 
between a vortex sheet and a surface exhibiting capillary effects. 

Boundary condition on the wall 

Let s, denote arc length measured upstream along the wall from the separation 
point and suppose that along the wall we may write down the Taylor series 
expansion 

s2,+ ... on $ = 0, q5 < 0,  (2.11) 

where, by our choice of co-ordinate systems, O(s, = O f )  = 0. To relate s, to  
q5 ( < 0) along $ = 0, we note that q,  = exp Q, = - +/as, ; thus 

ae I s<+-- 
as, s<=o+ 2 %  a28 ! s<=o+ 

s,(q5) = -/o’exp{-Q(t,O))dt on $ = 0, Q < 0. 

tqs,) = - 

(2.12) 

Henceforth we denote the limiting wall curvature by K = [tV/i?~<]~,,~+ and its 
derivatives with respect to s, for s, = 0 + by K’,  K ” ,  etc. In  solving a problem 
with a given geometry (2.11) is not very useful because the functional relation- 
ship s<($) depends on the solution Q, via (2.12). In the case of a straight wall, 
(2.11) reduces to 

O(s,) = 0 on $ = O ,  q5 < 0. (2.13) 

We shall be focusing our attention on cases where a+cc (i.e. small surface 
tensions) and (2.11) will suffice for these problems. 

Finally, an additional boundary condition at  large distances is required to fix 
the solution of Laplace’s equation; this will be derived later. 

Parameter sixes and simpliJication of free-streamline boundary condition 

We now assume that the Weber number a is very large and introduce the small 
parameter 

6 = a-1 (0 < € < 1). (2.14) 

Later it will be convenient to choose the Bond number according to the 
rehtionship 

0 < p.52 = yqlpU;: < 1; (2.15) 

this is not very restrictive in most physical applications. 

t It should be noted, however, that the normal derivatives are of opposite sign since 
the problem here is formulated in the upper half-plane while the vortex-sheet problem 
is in a lower half-plane. 

22 F L M  70 
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To motivate our discussion and simplify the arguments we assume zero gravity, 

sinhQ = 0 on $ = 0,  Q > 0, (2.16) 

with solution Q = 0  on i ) = 0 ,  $ > 0 .  (2.17) 

This is the classical free-streamline boundary condition and the first-order outer 
probIem (e = 0) is simply that of potential flow with surface tension neglected. 
We assume that the behaviour of this outer solution near the separation point S 
is given by 

r ( w )  = & - i d  = A,(e-%o)~ for [wj -+0 (n 3 argzv 2 o), (2.15) 

where the constant A,  < 0. The result (2.18) and the sign of A,  correspond to  the 
abrupt separation considered by Carter (1961) and Ackerberg (1970, 1973a, b). 
For these cases the limit e -+ 0 ,  which yields (2.16), cannot be uniformly valid for 
(2.18) predicts that 

aQ/a$ = a0/a$ = &A,$-+ for Q + 0 + on $- = 0,  (2.19) 

and eaQ/a$ can be made to dominate the term sinhQ if 4 is chosen sufficiently 
small [see (2.9)]. The remedy is to introduce an inner region near the separation 
point in which the terms in (2.9) balance. One might expect 4 = O(e2) in this 
region, but this is erroneous because Q = o(1) near the separation point. 

so that p = 0.t If we formally multiply (2.9) by e and then put e =_ 0,  we obtain 

Rcaling for the inner region 
Our interest is in the region where ?u = o(l) and we expect F = Q-if9 = o( 1);  
thus we introduce new variables 

= €aW* , qzC.) = m y W * ) ,  (2.20) 

and anticipate that a, b > 0 and zu* and I?* remain O(1). Since the Cauchz- 
Kiemaiin equations are linear in w, Q and 8, they remain unchanged by these 
transformations and ( 2 . 5 )  requires 

V2 * 8* V2 * Q : g  = 0,  where V; = az /a$+z+$ /a$*2 .  (2.21) 

To satisfy the boundary conditions, we substitute (2.20) into (2.9) and expand 
sinh Q and e-Q for e+ 0; thus 

aQ*/a$* = -@--lQ*-,&a-by on $* = 0, $* > 0. 

To est,iinate the size of y in this region, me use (2.3) and (2.20) to  write 

Expanding for €4 0 we find 

x = O(ea) and y = O(ea+b),  

p This assumption will be removed later. 

( 2 . 2 2 )  

(2 .23 )  

(2.24) 
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and for later use 

s = IOX [I + (dy/dx)2]*dx = O(sa). (2.25) 

Using (2.24)) the first term in (2.22) dominates the third provided that/3@ = o ( l ) ,  
and to achieve a balance between the first and second terms we choose a = I to 
obtain 

aQ*/a$*=-Q* on $ * = o ,  $ * > o .  (2.26) 

The physical significance of the elimination of the third term in (2.22) is that the 
gravitational force does not produce any first-order effects in the region given by 
(2.24) provided that (2.15) is satisfied. 

The most useful boundary condition along the wall AX is obtained by con- 
sidering the differentiated form of (2.11), i.e. 

aO/as, = -q<ae/a$ = K+K's,+ ... on $* = 0, #* < 0, (2.27) 

ao*la#* = - e a - b exp(-ebQ*)(K+K'.s<+ ...) on $* = 0, $* < 0. (2.28) 

where we have used (2.12). Introducing the change of variables (2.20) we find 

Expanding (2.28) for e-+ 0 and using (2.25) we obtain 

aO*/a$* = -ea--b~+O(ea,&'a-b) on $* = 0, $* < 0, (2.29) 

assuming that the non-dimensional curvature and its derivatives are all O( 1).t 
Putting a = I and anticipating the result in the next paragraph, where we find 
b = +, we obtain in the limit e-tO 

ao*/a#* = aQ*/a$* = 0 on $* = 0, $* < 0, (2.30) 

using the Cauchy-Riemann equations. The significance of this result is that, 
within the region w* = O(l) ,  the wall appears flat, to first order, with infinite 
radius of curvature. 

To complete the formulation of the boundary-value problem for t,he inner 
region, we require a condition for I w * I + co. The region 1 w * I = O( I) is embedded 
within a potential flow where (2.18) is valid for Iw( 3 0. Therefore, we require 
Q*-iB* to asymptote to (2.18) for Iw*I -+a. Expressing (2.18) in terms of the 
variables (2.20) we find 

Q*- iO* - eb-*aAo(e-niw*)* for (w*I-+co with $* > 0. (2.31) 

Noting that (2.21) and the boundary conditions (2.26) and (2.30) admit a trivial 
solution, we introduce a forcing term via (2.31) by choosing 

b = La 2 2  = 1. (2.32) 

Collecting our results and suppressing the asterisks, we have t,he following 

a 2 q a p  + a 2 Q l a p  = o for - co < $ CO, $ > 0, (2.33) 

boundary -value problem : 

Q N Re{A,(e-%o)*} for IwI+co, argw > 0. (2.36) 

t This restriction is stronger than necessary and could be relaxed. 
22-2 
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The condition argzu > 0 in (2.36) will not be superfluous because we shall find 
a standing capillary wave along the free streamline l/r E 0 which is not attenuated 
as Q -> co. It should also be noted that an edge condition a t  w = 0 is frequently 
specified for split boundary-value problems of this type. Since we are not certain 
what continuity conditions to expect, we simply require the solution and its 
normal derivative to be as smooth as possible a t  the edge; this will be discussed 
later. 

3. An integral equation and its solution by the Wiener-Hopf technique 
A standard method for solving a potential problem such as (2.33)-(2.36) is to 

use a Green's function to formulate it as an integral equation, which is solved 
using the Wiener-Hopf technique. A straightforward application of this method 
fails, however, because the solution sought is unbounded for IwI +GO. We may 
still employ the standard method if we temporarily overlook (2.36) and note that 
any $ derivative of Q will also satisfy (2.33)-(2.35). Therefore, we shall solve 
(2.33)-(2.35), as described, for a function U($,  @) which we shall designate as the 
fundamental solution, and then determine a solution for Q(q5, @) using q5 integrals 
and $ derivatives of U(q5, @). 

To cast the problem into a convenient form, we consider the slightly more 
genera 1 equation 

v2u - E2U = 0, 

where k is a positive parameter which will be allowed to approach zero a t  a 
Convenient point in the andysis and U($,  $) will be subjected to the boundary 
conditions (2.34) and (2.35). The appropriate Green's function which has a zero 
normal derivative along @ = 0 is 

(3.1) 

G($, $+, t )  = - ( 2 W { K o ( k [ ( +  - sI2 + (@- V19)  

+ KO("$ - s)2 + (@ + t)214)}, (3.2) 

where K O  is the modified Bessel function of the second kind of order zero. If we 
apply Green's theorem and allow for the boundary conditions (2.34) and (2.35) 
we obtain 

In  obtaining (3.3) it has been assumed that no contributions arise from contour 
integrals for IwI +co and lwl --f 0;  this can be verified a posteriori. 

T h e  Wiener-Hopf technique 
Define the new functions 

and 
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The integral equation (3.3) may now be writ.ten as 
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Int’roduce t,he Fourier transform and its inverse 

From the definition (3.4), F-(w) will be an analytic function in the lower half- 
plane; this is denoted by the suffix minus. Similarly G+(w),  the Fourier transform 
of g($), will be an analytic function in the upper half-plane. On taking the Fourier 
t.ransform of (3.6), we obtain 

where 

F-(w) +a+(@) = m-lZ(w) F-(w), 

E(w) = n(k2+w2)-4 

is the Fourier transform of Ko(k [ q5 [ ) and is a regular function in the w plane cut 
along t,he imaginary axis from ik to ioo and - ioo to  - ik. Rewriting (3.8) we find 

J ” ( o J ) [ ~ - ( ~ ~ + u ~ ) - ~ ]  = -G+(w). (3.10) 

In  applying the Wiener-Hopf technique it is necessary to write the coefficient 
of F-(w) as the ratio of two functions, the numerator being analytic in the lower 
half-plane and the denominator being analytic in the upper half-plane. To carry 
out this splitting we note that the bracketed term in (3.10) has zeros when 

w = _+ A, where h = (1 - /I2)$. (3.11) 

We explicitly display these zeros by writing 

1 - (k2+w2)--fr = ( ( $ - A 2 )  [ (k2+w2)9-  ~ ] / ( w ~ - A ~ )  (k2+w2)9  (3.12) 

and carry out the split 

L ( w )  = [l-(k2+w”)a]/(w2-A2) (k2+O”):  = L-(w)/L+(w),  (3.13) 

where according to  Noble (1958, pp. 15 ff.) 

00 +ic 

- m + i c  
lnL+(w) = (274-1 (3.14) 

00 + id  

- 00 +id 
InL-(w) = (274-l  S (w - t ) - l~n [ ~ ( t ) ]  tit (3.15) 

and - II: < c < Im w < d < 1;. To evaluate these integrals it is convenient first to 
differentiate with respect to w and then displace the contours such that the 
integral for L- (say) embraces the branch cut from im to iE. Taking into account 
the contribution from the neighbourhood of the branch point ik, we find after 
letting II:+ 0 

L’(w)/L-(w) = - (20)-1- - 1 [(t + iw) (1 + t 2 ) ] - 1  dt.? (3.16) 
= o  

Primes denote differentiation with respect to o. 
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To complete the integration, let w be a point on the negative imaginary axis and 
put w = - i s  with s > 0. We find 

L-( - is) = C[2( 1 + s2)I-a exp { n-1 /: (1 + tz)-lln t dt} ,  (3.17) 

where C is a constant of integration. To determine L-(w)  elsewhere, introduce 
a cut along the positive imaginary axis. Thus, if w is real and positive, 

L-(w) = Cexp( - ini) [w(l +w)]-$exp (i/n) (1-s2)-11nsd~ (3.18) { !OW I '  

{ /ow 1 

Similarly, if w = is with s real and positive 

 is) = - ~ [ s 2 ( 1 +  s2)lt exp { - n - ~ / '  ( I  + tz)-lln t d t ) ,  (3.19) 
0 

and if w is real and positive 

L.,(w) = -cexp(-$ni)[w(l+w)]$exp (i/n) (l-s2)-11nsds . (3.20) 

In  obtaining (3.19) and (3.20) a constant of integration was chosen such that 
(3.13) is satisfied when E = 0 and w is real. 

If we assume, for the moment, that k + 0 and substitute (3.13) into (3.10) we 

obtain F-(w)L-(w) (w2 - A') = G+(w) L+(w). (3.21) 

We now assert that F- a d  G+ are analytic in the strip 0 > Im w > - k and that 
the left-hand side of (3.21) defines a function which is analytic in the Ion er half- 
plane Im w < 0. Similarly the right-hand side is analytic in the upper hulf-plane 
Imn w > - E .  It follows that both sides must equal a function which is analytic 
everywhere, except possibly a t  the point at  infinity. We shall assume (and verify 
a postuiori) that the correct analytic fixnction is a coiistant A ;  therefore 

K ( W )  = A/[(@'- A') L_(O)], G+(w) = A/L+(U). (3.22) 

To complete the determination of f  and g we use the inversion integral (3.7) to 
write 

j(+) = ( 2 r r ) - l ~  / [ (wz-  1) ~-(w)l-leifi"do (3.23) 
- w  

and (3.24) 

where we have now put I% =. 0 so that h2 = 1. Both integrals are evaluated using 
contour integration, which for the case of g(q5) involves deforming the contour 
such that it embraces both sides of the negative imaginary axis and then using 
(3.13) and (3.17) to find the values of L+(o) on either side of the cut. The details 
are messy and we simply give the results: 

g(0) = - (A/C)r-l  exp{$t-H(t)}t-$(l +t2 ) - sd t  for $ < 0 (3.25) 
/Om 

and f(Q) = (A/C) - 2: sin (q5 + in-) + nP1 exp { - $t + H(t))tg( 1 + P - 2  clt 

where 

and the sine term in (3.26) is a result of the poles in (3.23) a t  (1) = 1. 
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Oucef(#) is known, it is a simple matter to determine U($ ,  ~) throughout the 
upper half-plane. This is done by taking the Fourier transform of (3.1) with 
respect to Q, solving the resulting differential equation to obtain a solution whieh 
is bounded for 1c. -+ GO, and determining the remaining constant in the solution 
using the Fourier transforms of the boundary conditions (2.34) and (2.35) and 
the transform off(+) given by (3.22). After using the inversion integral we obtain 

or 

(3.25) 

(3.29) 

These integrals are evaluated using contour integration. For Q < 0 we use (3.28) 
and (3.17) and close the contour in the lower half-plane, while for Q > 0 we use 
(3.29) and (3.19) and close the contour in the upper half-plane. The following 
results are obtained after letting k --f 0: 

Cy(+, ~) = - (A /C)  77-1 

O(Q, 1c.l = (A/c) { - 2: e-9 sin (4 + in) 

exp {$t - H(t)} t-f (I  + t2)-2 cos ($t)  dt 

for Q < (9, 1/. 3 0 (3.30) 
/OW 

and 

I +?r-l~~uDexp{-$t+H(t)jt-:(i +t2)-* (tcosqrt-sin$t)dt 

for Q 3 0, $ 3 0. (3.31) 

It can be verified directly that (3.30) and (3.31) are solutions of (2.33)-(2.35). 
The most interesting aspect of the solution is the appearance of a standing capil- 
lary wave on @ = 0, Q > 0 (i.e. the free streamline) which decays exponentially 
for $+GO. We now observe that any @ derivative of (3.30) and (3.31) generates 
a new solution of (2.33)-(2.35), and thus our boundary-value problem does not 
possess CG uniqzce sohution without some additional constraints. 

Asymptotic expansions for I Q 1 -+ 0 and 14 I -+ GO 

Asymptotic expansions for [ Q [ --f 0 can be found by expanding F-(w) and G+(w) 
for 1 0 1  +GO and interpreting each term separately. A very convenient table to 
use for this purpose has been compiled by Geller (1963). If we substitute (3.18) 
and (3.20) into (3.22) and expand for o-fw we find 

G+(w) N - (Ai/Co) {i - ( i / nw)  (In w + I)  - (2w)-l+ O[( ln~/o)~] ) ,  (3.32) 

P-(o) - (Ail&)) (1 - ( i / n w )  (Inw + 1) + (2w)-l+ O[(ln w ~ w ) ~ ] ) .  (3.33) and 

Thus 9($ )  - -(4c) { i+n-11Ql  ( In\#\  + Y - 2 ) + 0 [ ( w $ 1 ) 2 1 )  for 
+ + o - ,  (3.34) 

f($) N -(A/C)(1-n-1$(ln$+y-2)+O[($In$)2]) for $ + O + ,  (3.35) 

where Euler’s constant y = 0-5772 ... . We note that U($ ,  0) is continuous for 
1#1--fO, but it may be seen from (2.34) and (2.35) that its normal derivative 
[aU/a$]9=, is not, since U(@,  0)  = f(Q) +- 0 for Q -+ 0 + . 
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Asymptotic expansions can be found for 141 --f 00 by expanding the integrands 
of (3.25) and (3.26) for t- t  0 and integrating term by term. In  this way we obtain 
(see Geller 1963) 

f(Q) N - (2774) (AIC) ((in)$ sin (+ + &J) - (4+$)-1 

+ (8n@)-l[31n$ + 3(y + 2ln 2) - 51 +o($-%)) for $+a (3.36) 

x [ln1$1 +y+2In2-  ~ ] + o ( ( $ ] - % ) )  for $+-co. (3.37) 

We have observed that the sine term in (3.31) and (3.36) is only important on the 
boundary 9 = 0,  (p > 0, where i t  is not exponentially small. If we require 
argw > 0, it is easy to infer from (3.36) and (3.37) that the asymptotic form of 
C(Q, 9) will be 

and g ( 4 )  - (2n-B) (AIC){(2 I+ls)-l+ (477 l$lV1 

U(#,$)  N - (2i.r-4) (A /C)  Re{+(e-%-g + (4n)-l (e-%u-j 

x Lln (e-niw) + y + 2 In 2 - 11 + o(w-;)) 

for IwI--f00 (77 z argw > 0) .  (3.38) 

On comparing (3.38) with (2.36) we might expect to find that &($,+) is the 
0 integral of the fundamental solution U ( $ ,  ?+h). 

4. The solution for Q($,  $) 

From our previous discussion we expect to find 

&(A $1 = s4 U(s ,  $1 ds  + Jl(?+h), (4.1) 
0 

where .&I($) is an unknown function to be determined. We now assume (4.1) to 
be valid and show that the original boundary-value problem (2.33)-(2.36) can be 
satisfied by this choice. Moreover we shall find that Q($,$) and its normal 
derivative are continuous a t  t o  = 0, and that it is the only solution possessing 
these continuity properties. In the disc sion which follows, we shall assume 
that U($,  $) obeys (3.1) with k = 0. 

First we verify that (4.1) satisfies LapIace's equation for $ > 0. Differentiat,ing 
(4.1) twice with respect to 9 we obtain? 

From (4.1), a7Jla4 = a2Q/a#2 and (4.3) may be written as 

V ~ Q  = [a u l a $ ~ ~ = ~  + a2Mlap.  (4.4) 

t Differentiating under the integral sign is permissible since U and its derivatives are 
uniformly continuous for $r > 0. This is a property of harmonic functions. 
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Therefore Q will satisfy Laplace's equation provided that M($)  obeys the 
second-order differential equation 

We now check the boundary conditions (2.34) and (2.35) on $ = 0. Differentiating 
(4.1) with respect to $ and taking the limit $ 3 0  yields 

d2M/d$2 = -[aU/a$]+, for @ > 0. (4.5) 

For $ < 0,  [aU/a$],=, = 0 and thus (2.34) will be satisfied if 

For q5 > 0, [aU/a@],,, = - U($, 0) and (4.6) requires 
dM/d$ = 0 for $ + O + . t  (4.7) 

where we have used (4.7) and (4.1). Therefore (2.35) will be satisfied if 

M = O  for $ + O + .  (4.9) 

Thus M($)  satisfies (4.5) subject to the initial conditions (4.7) and (4.9). To 
guarantee that such a function exists we check the behaviour of [aU/a$]+, for 
$ + O f  using the asymptotic expansion of U(q5, $) for w+O. Using (3.34) and 
(3.35) we infer that for w+O 

U ( $ , $ )  N - (A/C)Re(l +n-1(e-Tiw)[ln(e-Tiw)+y-2]+...}, 

where 0 6 argw 6 n. (4.10) 

Hence [aU/a$]+, = O(ln @) for $ --f 0 + , (4.11) 

and (4.5) is integrable for $+ 0 + . 
Finally, we must verify that (2.36) is satisfied for I W I + C O  with argw > 0. 

Using the complex form (3.38), we can show that 

Q($, @) N (2n-4) (A /C)  Re {(e-nizu)i-  (2n)-1(e-niw)-i 

x[In(e-"b)+y+21n2+1]+ ...} for [w[+Co (n 2 argw > 0). (4.12) 

The first-order term in this equation will agree with (2.36) if we choose 

2n-iA/C = A,. (4.13) 

Since A ,  is known from the global potential solution with surface tension neg- 
lected, the solution given by (4.1) with M($)  determined from ( 4 4 ,  (4.7) and 
(4.9) is completely defined and satisfies the original boundary-value problem 
(2.33)-( 2.36). 

Uniqueness of the solution 

If we apply (4.1) at the separation point S, where $ = $ = 0, we find 

Q(0,O) = 0. (4.14) 

This surprising result states that the speed at  the separation point is the same 
(to first order) as for the case with surface tension neglected. Using this result, 

t Since M ( @ )  satisfies a differential equation valid for @ > 0, the boundary condition 
should be interpreted as a limiting value for $b + 0 + . 



346 R. C. Ackerberg 

we see from (2.34) and (2.35) that the normal derivative aQ/a$ is continuous a t  8. 
It was mentioned earlier t h a t  the fundamental solution D($,$) and all its 
$ derix-atives satisfy (2.33)-(2.35) and from (3.38) we see they are o(w4) for 
Iw‘( +a; thus these solutions may bc considered to be eigenftinctions for this 
problem. However, the addition of any multiple of U ( $ ,  $) to Q ( Q ,  $) will produce 
a new solution whose normal derivative is not continuous at S while the addition 
of any 0 derivative of U will produce a new solution with Q not bounded at  LS [see 
(3.34) and (3.35)]. I n  physical problems where there is a choice of continuity 
conditions to be imposed, it is reasonable to choose the most continuous solution, 
especially when that solution is unique as it is in our case. We therefore specify 
our solution by (4.1) with the constant AICgiveii by (4.13). Note that thc addition 
to Q of any d integral of Q will also yield a smooth solution a t  S ,  but the boundary 
condition at  infinity (2.36) will not be satisfied. 

Jfutching with the outer solution 

For argw > 0 the matching with t’he first-order outer flow is provided by (2.36). 
When subsequent terms in the asymptotic expansion (4.12) are expressed in 
terms of the outer variables (remembering that win 9s 3 and 4 is really m+), they 
represent higher-order terms in the outer solution. Along the free boundary, 
where y = 0 and Q > 0, the inner solutionintroduces a term of the form 

€i cos (€-I# +#7r). (1.16) 

Since this term is multiplied by an exponentially small factor in the outer 
region where $ = 0 ( 1 ) ,  a standing wave can never enter the outer expansion 
except as a transcendentallg small term. 

The*functions Q($,  0) and O ( Q ,  0) 
We introduce the notatmion 

(4.16) 

and note that Q($, 0) is defined by (3.25), (3.26), (4.1) and (4.9).  After carrying 
out the integrations and noting that A ,  < 0,  we obtain 

Q(0) = Q>(9)/1A,I + (t+os ($+#4 

= ( in)*cos (8.) + (4n)-* (e-+- I) efI(S)s-:(I +s2)-ids 

for $ 3 0 (4.17) 

Q<($)/IA,l = (4n)- iSm(eQS--  l)e-H(s)s-g(l +s2)-ads for $ < 0. (4.15) 

Using the Cauchy-Riemann equations (2.4) and the boundary condition (2.35) 
we map write 

sum 
and 

0 

B,($) = -  &,(s)ds for Q 3 0 on $ =  0. so” (4.19) 
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Substituting (4.17) into (4.19) and integrating, we find 

A($) = f?,($)/lAol - (&r)*sin (q5 +Sn) 

= - (&r)+sin($n-)-clq5+ (47r-B (e-6"- I)eH(S)s-%(1+s2)-%ds 
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for $ 2 0, (4.20) 

The result (4.21) was obtained numerically, but it can be proved analytically by 
an application of 

1 9 g d s  = 0, (4.22) 

where U is the fundamental soIution satisfying (2.33)-(2.35) and 3 is the 
boundary of the domain, i.e. the upper half-plane. The result (4.22) follows from 
applying Green's theorem to (2.33). Some care is required in handling the surface- 
wave term in (3.31), which contributes to  the integral around the infinite semi- 
circle in the upper half-plane. 

0 can be obtained directly 
by using (3.34) and (3.35) with (4.1), (4.9) and (4.19). The procedure is straight- 
forward and these results are not given here. 

The asymptotic results for Iq5I -+ co are more challenging to find because the 
integrals in (4.17), (4.18) and (4.20) are marginally convergent and some care is 
necessary in evaluating them. After some extensive algebra we obtained the 
following results: 

Asymptotic expansions of Q<, Q, and 8, for 

sZ(q5)/lAol - cl+(2~4)-1-(4~q5t)-1[ln$+y- 1+2In2]  

+o(Q-$) for $+m, (4.23) 

Q<(q5)/IAOl - 1q51~+c2+(2~1q51~)-1[ln1q51 +y+1+21n21 
+o(l$I-i) for $+-m (4.24) 

t-o(q5-4) for q5-tm. (4.25) 

and 

Here el is given by (4.21) while 

A(#) - c . ~  -c1$ - q5k - (2n@)-' [ln q5 + y + 1 + 21n 21 

(4.26) 

and c3 = - (+n)4sin($n)-(4n)-9 [ ( 1 + s 2 ) - % e ~ f ( S ) - l ] s - ~ d s  = 0. (4.27) 

The zero values of c2 and c3 were obtained numerically, but we surmise that a 
proof, similar to that for cl, which is based on (4.22), could be found to  establish 
these results analytically. 

5. Numerical results and discussion 

Using (3.25) and (3.26), numerical values were obtained for g(q5)/lAol and 

Numerical results 

A($) = f(q5)llAol- (S+ sin (4 +tin) (5.1) 
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FIGURE 4. The functions a(#*), &<( -$*) and A($*) vs. $*. 
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using the CDC6600 computer a t  the Courant Institute. These results are dis- 
played in figure 3. Results were also found for !2($), Q<($) and h($), using (4.17), 
(4.18) a.nd (4.20), and are shown in figure 4. 

An equation for the free-streamline shape can be derived from (2.3). Intro- 
ducing the change of variables (2.20) we find 

Integrst,ing along y?* = 0 and separating real and imaginary parts, we obtain 
dz/dw* = cexp(-etI'*(w*)). (5.2) 

(5.3) 

(5.4) 

X I B  = exp { - dQ> ( s ) }  cos [c:SB, (s)] ds so"' 
and y/e = I0'* exp { - c ~ ,  (s)> sin [ E ~ B , ( ~ ) I  cis.? 

7 Note that y is O(& for t' --f 0 [see (2.24)]. 

FIGURE 3. The functions g( -$*)/[&I and A($*) us. $*. 
See (3.251, (3.26) and (5.1). 



Effects of capillarity on free-streamline separation 349 

X 

FIGURE 5. Free-streamline shapes in the inner region for various values of 2. 
See (5.3)-(5.5) and (5.7). 

Since Q, and 8 ,  are linearly dependent on I A , ( ,  we may define the newparameter 

and note that (5.3) and (5.4) define a functional relationship between x and y, 
with q5 * as parameter, which is of the form 

E = E I A , ~ ~  with 0 < E <  1, (5.5) 

Y = S ( X ;  Z), (5 .6 )  
where x = I A o 1 2 ( X / E ) ,  Y = IA0(2(y/.). (5.7) 
Numerical solutions of (5.3) and (5.4) were obtained for values of Z in the range 
0.005 < Z < 0.10 and are displayed in figure 5. The capillary waves on the free 
surface are evident. 

The coefficient of pressure C, along the upstream wall can be defined by 

C, = @-p,)/frpU~ = 1-q2-((p/2a) y for $* < 0. (5 .8)  
If the wall is taken a t  y = 0, (5.8) may be written as 

C,(X) = l-exp{2~~[&,($*)/iA~i]f on $* = 0,  $* < 0, (5.9) 

where 

Numerical values for C,(X; Z) are displayed in figure 6. 
Table 1 lists the values of A,  for two well-known free-streamline problems. 

These values were obtained from the solutions givenin Lamb (1945, pp. 98 ff.). 

x = ~ ~ * ~ X p { - E s ~ , ( s ) / ~ ~ , l j d s  on $* = 0, $* < 0. 

Discussion of results 
We summarize the important features of our solut.ion, which are valid for large 
Weber numbers. 

(i) The speed a t  the separation point is the same, to first order, with or without 
the effects of surface tension. 
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-x 
FIGURE 6 .  The coefficient of t,he pressure in the inner region along the upstream wall 

(x < 0, y = 0) for various values of 2. See (5.8) and (5.9). 

Flow L I;ru A0 

Flat plate of breadth 21 set 4Z/(n + 4) Separation-point speed - $2 

Flow from a two-dimensional d / ( n  + 2 )  Separation-point speed - 42 

perpendicular to a uniform 
stream 

slot of width d 

TABLE 1. Values of A, with the appropriate characteristic lengths and 
velocities for two free-streamline problems 

(ii) At the separation point the free streamline lies in the plane tangential to 
the wall at  the separation point and has an infinite radius of curvature. Thus the 
radius of curvature of the $ = 0 streamline will not be continuous at  S unless the 
wall is perfectly flat. We note that the flow region in the physical plane will have 
dimensions x = O(&) by y = O(&L), and within such a region a wall with a radius 
of curvature O ( L )  in the outer variables appears to have a radius of curvature 
O(L/?) = co, to first order when E + O ,  in the inner variables. Therefore, in an 
asymptotic sense, the radius of curvature is continuous. 

(iii) The free streamline has a wavelike shape as shown in figure 5. As 2 
increases, the trend indicates a swelling which could make the jet, at  certain 
points, extend upstream beyond the edge ; this seems to indicate that some die 
swell phenomena may be partly accounted for by capillary wave action. For 
2 not small, further work is necessary using the nonlinear boundary condition 
(2.9); this work is now under way. 

(iv) The predicted singularities in the curvature and pressure gradient at  the 
separation point which arise from the potential theory without surface t,ension 
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are removed by a small non-zero surface-tension coefficient. As mentioned in (ii), 
the radius of curvature of the free streamline a t  S is infinite (for zero surface 
tension i t  is zero) and the pressure gradient a t  S in the physical (unscaled) vari- 
ables (x, y) is favourable and O( I/?*) for Z 3 0. Observe that in figure 6 the abscissa 
is X, and using this variable in place of x, the pressure gradient will be favourable 
but O(Z4). The boundary-layer separation studies of Ackerberg (1970, 1973a) will 
apply t o  flows with large Weber numbers if the boundary-layer solution is 
restricted to the region upstream of the edge along the wall where x/L 3 O(R-$) 
provided that 22-6 9 Z, where R is the Reynolds number based on L. Further 
work on boundary-layer motions with capillary effects will be discussed in 
a subsequent paper. 

(v) The concept of the 'static contact angle' appears to be irrelevant here, 
although it may be important when viscosity is taken into account. From our 
work this angle is always 180", i.e. the liquid-gas interface is tangential to the 
wall as discussed in (ii); furthermore, this flow property is independent of the 
materials provided that the Weber number and Reynolds number are large. There 
may be other situations, of which we are not aware, where the non-uniqueness 
discussed in 3 4 may be usefulin constructing solutions which satisfy unusual boun- 
dary conditions at the edge. As an example, it might be desirable to suppress the 
standing wave on the free streamline by a proper combination of eigenfunctions. 

(vi) The application of this work to axisymmetric potential flow separation 
with a non-zero surface-tension coefficient is of interest. Ackerberg (1973 b)  found 
that without surface-tension effects the axisymmetric flow separation in the 
azimuthal plane was the same as the two-dimensional flow to the first few orders. 
We now believe this to be true even with a small surface tension taken into ac- 
count. The reason is that the boundary condition (2.8) along the free streamline 
would be modified by a transverse curvature term O(L-l), but this is much smaller 
(i.e. of higher order) than the near-singular term which has already been included. 
Therefore, we should expect the streamline shapes in figure 5 to apply to the free 
streamlines in the azimuthal plane for axisymmetric flow. However, we do not 
know any values of A, for these cases owing to a lack of analytical solutions. 

It would be interesting to know whether experimental observations near the 
edge would verify the existence of the predicted capillary waves. The theory is 
valid for large Weber numbers, and this will require observations in a very small 
region near the edge. We hope that the results presented here will stimulate 
experimentation. 

The author is grateful for the support provided by the National Science 
Foundation under Grant GK-41776 while this work was performed. Thanks are 
due to Prof. N. Marcuvitz and Prof. J. Shmoys for some helpful discussions. 
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